Volver a Guía

CURSO RELACIONADO

Análisis Matemático 66

2025 GUTIERREZ (ÚNICA)

¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰


Ir al curso
ANÁLISIS MATEMÁTICO 66 CBC
CÁTEDRA GUTIERREZ (ÚNICA)

Práctica 0: Preliminares

1. Calcule
e) $9\left(\frac{\sqrt{9+25}}{2}\right)^{-1}$

Respuesta

Ahora queremos resolver $9\left(\frac{\sqrt{9+25}}{2}\right)^{-1}$

Como vimos en la clase de "Reglas de potenciación", ese signo $-$ en el exponente nos da vuelta la fracción y nos la deja elevado a la $1$:

$9\left(\frac{\sqrt{9+25}}{2}\right)^{-1} = 9\left(\frac{2}{\sqrt{9+25}}\right)^{1} = 9 \cdot \frac{2}{\sqrt{9+25}}$

Ahora terminamos de reescribirlo, así:

$ 9 \cdot \frac{2}{\sqrt{9+25}} = \frac{9}{1}\cdot \frac{2}{\sqrt{9+25}} = \frac{18}{\sqrt{9+25}} = \frac{18}{\sqrt{34}} $
Reportar problema
🤖
¿Tenés dudas? Pregúntale a ExaBoti
Asistente de IA para resolver tus preguntas al instante
🤖
¡Hola! Soy ExaBoti

Para chatear conmigo sobre este ejercicio necesitas iniciar sesión

ExaComunidad
Conecta con otros estudiantes y profesores
Avatar Caro 19 de diciembre 21:24
Hola Flor! Cómo estás? En este ejercicio pude llegar al mismo resultado, pero el resultado que me dio lo racionalicé para despejar la raíz del denominador. No sé si igualmente era necesario hacerlo pero me quedó de la siguiente forma:

2024-12-19%2021:24:46_7189381.png
Avatar Flor Profesor 20 de diciembre 10:46
@Caro Está perfecto! :D Son dos formas distintas de expresar el mismo número :)

De hecho, si ponés en la calculadora $\frac{18}{\sqrt{34}}$ vas a ver que exactamente el mismo que $\frac{9\sqrt{34}}{17}$

En este caso no era necesario hacerlo, pero está buenísimo que ya tengas ese ojo y esa fluidez para hacer esto, porque en otros escenarios si puede ser que necesitemos hacer algo así! :)
¡Uníte a la ExaComunidad! 💬

Conéctate con otros estudiantes y profesores